function (){
# timepoints = c(1:10)/10*pi*1
#
# ccf_curves = tribble(~"Experiment", ~"Well", ~"Sample", ~`Value`,
# "1", "A1", "Baseline", c(sin(timepoints)),
# "1", "A4", "Smaller magnitude", c(sin(timepoints)*0.7),
# "1", "A5", "Larger magnitude", c(sin(timepoints)*0.7),
# "1", "A6", "Flatline", c(sin(timepoints*5))) %>%
# mutate(Unit = "R", Frequency = 4000, Time = list(timepoints), Instrument = "ECIS", SampleID = as.numeric(as.factor(Sample)))
#
# ccf.df = ccf_curves %>% unnest(cols = c(Value, Time))
#
# vascr_plot_line(ccf.df, text_labels = FALSE)
#
# cc = ccf.df %>% vascr_cc()
# ccf.df %>% vascr_cc() %>% vascr_summarise_cc()
# ccf.df %>% vascr_cc() %>% vascr_summarise_cc() %>% vascr_plot_cc()
#
# v1 = cc[5,][10] %>% unlist() %>% as.vector()
# v2 = cc[5,][5] %>% unlist() %>% as.vector()
#
# ccf(v1, v2)
#
#
# vascr:::vascr_find_metadata(vascr::growth.df)
#
# data.df = vascr::growth.df %>% vascr_subset(unit = "R", frequency = 4000)
#
#
# flat_growth = growth.df %>% group_by_all() %>% ungroup("Value", "Time") %>%
# mutate(Value = Value/max(Value, na.rm = TRUE))
#
# vascr_plot_line(flat_growth %>% vascr_subset(unit = "R", frequency = 4000))
#
#
# vascr_find_metadata(ecis)
#
#
# d1 = vascr::growth.df %>% vascr_subset(unit = "R", frequency = 4000, sampleid = c(1,2,5), well = "A01") %>% filter(!is.na(Value))
# d2 = vascr::growth.df %>% vascr_subset(unit = "R", frequency = 4000, sampleid = c(1,2,5), well = "A02") %>% filter(!is.na(Value))
# d2 = vascr::growth.df %>% vascr_subset(unit = "R", frequency = 4000, well = "H02") %>% filter(!is.na(Value))
#
# ggplot() +
# geom_point(aes(x = d1$Value, y = d2$Value))
#
# ccf(d1$Value, d2$Value) %>% print()
# ccf(d2$Value, d1$Value) %>% print()
#
# cor.test(d1$Value, d2$Value, method = "pearson")
#
# devtools::install_github("SigurdJanson/ccf21")
#
# cc = ccf21::ccf(d1$Value, d2$Value, lag.max = 0, ci = "0.95")
#
# ccf1 = ccf(d1$Value, d2$Value, lag.max = 0)
#
# 2 * (1 - pnorm(as.numeric(ccf1[[1]]), mean = 0, sd = 1/sqrt(ccf1$n.used)))
#
# data.df = ecis %>% vascr_subset(unit = "R", frequency = "4000", sampleid = c(1,3,6), time = c(40,85))
#
# vascr_plot_line(data.df)
#
# ccf.df = vascr_cc(data.df)
#
# ccf.df %>% vascr_summarise_cc("summary") %>% vascr_plot_cc()
#
#
#
# t1 = original_data$Value
# t2 = reverse_processed$Value
#
# ccf(t1, t2, lag.max = 0, plot = FALSE)[[1]] %>% as.numeric()
#
#
# data.df = vascr::growth.df %>% vascr_subset(unit = "R", frequency = 4000) # experiment = 1,
#
# data.df %>% vascr_plot_line()
#
# result = vascr_cc(data.df, reference = 1)
#
# result %>% vascr_summarise_cc() %>% vascr_plot_cc()
#
# vec = result$cc
#
# qqnorm(vec)
# qqline(vec)
#
# t.test(vec, mu = 0.1, alternative = "less")
#
# result = result %>% mutate(pair = paste(Sample.x, Sample.y)) %>%
# mutate(pair = str_remove_all(pair, ",000_cells \\+ HCMEC D3_line"))
# result
#
#
# s1 = result %>% filter(SampleID.x ==5, SampleID.y ==5) %>% filter(Experiment == "1 : Experiment 1")
# s2 = result %>% filter(SampleID.x ==5, SampleID.y ==5) %>% filter(Experiment == "2 : Experiment2")
#
#
# t.test(s1$cc, s2$cc)
#
# # lmod =lm(cc ~ Sample.y, result)
#
# lmod = aov(cc ~ Sample.x + Experiment, result)
# summary(lmod)
# TukeyHSD(lmod)
#
# lmod = aov(cc ~ Sample.x/Experiment, result)
# lmod
# TukeyHSD(lmod)
#
#
# ## Have a go a the Dunnett Test
#
# rs = result %>% vascr_summarise_cc(level = "experiments") %>%
# mutate(pair = paste(Sample.x, Sample.y)) %>%
# mutate(pair = str_remove_all(pair, ",000_cells \\+ HCMEC D3_line"))
#
# rs
#
# DescTools::DunnettTest(rs$cc, rs$Sample.x, control = "0_cells + HCMEC D3_line")
#
# DescTools::DunnettTest(rs$cc, rs$pair, control = "15 15")
#
#
# kruskal.test(rs$cc ~ rs$Sample.x, data = rs)
#
# dunnTest(cc ~ Sample.x,
# data=rs,
# method="bonferroni")
#
#
#
# lmod = aov(cc ~ Sample.x/Experiment, rs)
# lmod
# TukeyHSD(lmod)
#
# lmod = aov(cc ~ Sample.x, rs)
# lmod
# TukeyHSD(lmod)
#
#
# DescTools::DunnettTest(rs$cc, rs$Sample.x, control = "0_cells + HCMEC D3_line")
#
# rs2 = rs %>% mutate(Sample.x = as.factor(Sample.x))
#
# lmod = aov(cc ~ Sample.x, rs2)
# lmod
#
# Dunnett <- glht(lmod, linfct = mcp(Sample.x = "Tukey"))
# summary(Dunnett)
#
#
#
# lm(Value)
# 2 * (1 - pnorm(as.numeric(ccf1[[1]]), mean = 0, sd = 1/sqrt(30)))
# ccf_calc %>% ggplot() +
# geom_point(aes(y = title, x = cc, color = expid))
# Used in core package Value ~ Experiment + Sample
# ccf_aov = aov(cc ~ Experiment + title, ccf_calc)
#
# ccf_aov
#
# anova(ccf_aov)
#
# hsd = tukey_hsd(ccf_calc, cc ~ expid + title)
#
# hsd
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.